Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530348

RESUMO

The understanding of eco-evolutionary dynamics, and in particular the mechanism of coexistence of species, is still fragmentary and in need of test bench model systems. To this aim we developed a variant of SELEX in vitro selection to study the evolution of a population of ∼1015 single-strand DNA oligonucleotide 'individuals'. We begin with a seed of random sequences which we select via affinity capture from ∼1012 DNA oligomers of fixed sequence ('resources') over which they compete. At each cycle ('generation'), the ecosystem is replenished via PCR amplification of survivors. Massive parallel sequencing indicates that across generations the variety of sequences ('species') drastically decreases, while some of them become populous and dominate the ecosystem. The simplicity of our approach, in which survival is granted by hybridization, enables a quantitative investigation of fitness through a statistical analysis of binding energies. We find that the strength of individual resource binding dominates the selection in the first generations, while inter- and intra-individual interactions become important in later stages, in parallel with the emergence of prototypical forms of mutualism and parasitism.


Assuntos
DNA de Cadeia Simples , Exercício Físico , Hibridização Genética , Oligonucleotídeos
2.
Sci Adv ; 10(10): eadh0477, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457496

RESUMO

In recent years, the application of metagenomics techniques has advanced our understanding of plankton communities and their global distribution. Despite this progress, the relationship between the abundance distribution of diatom species and varying marine environmental conditions remains poorly understood. This study, leveraging data from the Tara Oceans expedition, tests the hypothesis that diatoms in sampled stations display a consistent species abundance distribution structure, as though they were sampled from a single ocean-wide metacommunity. Using a neutral sampling theory, we thus develop a framework to estimate the structure and diversity of diatom communities at each sampling station given the shape of the species abundance distribution of the metacommunity and the information of a reference station. Our analysis reveals a substantial temperature gradient in the discrepancies between predicted and observed biodiversity across the sampled stations. These findings challenge the hypothesis of a single neutral metacommunity, indicating that environmental differences substantially influence both the composition and structure of diatom communities.


Assuntos
Diatomáceas , Plâncton , Biodiversidade , Oceanos e Mares , Ecossistema
3.
PLoS Comput Biol ; 20(1): e1011274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215166

RESUMO

The network control theory framework holds great potential to inform neurostimulation experiments aimed at inducing desired activity states in the brain. However, the current applicability of the framework is limited by inappropriate modeling of brain dynamics, and an overly ambitious focus on whole-brain activity control. In this work, we leverage recent progress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept of target controllability to focus on the control of a single region or a small subnetwork of nodes. We discuss when control may be possible with a reasonably low energy cost and few stimulation loci, and give general predictions on where to stimulate depending on the subset of regions one wishes to control. Importantly, using the robustly asymmetric effective connectome instead of the symmetric structural connectome (as in previous research), we highlight the fundamentally different roles in- and out-hubs have in the control problem, and the relevance of inhibitory connections. The large degree of inter-individual variation in the effective connectome implies that the control problem is best formulated at the individual level, but we discuss to what extent group results may still prove useful.


Assuntos
Conectoma , Rede Nervosa , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética
4.
Sci Adv ; 9(47): eadj3524, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992161

RESUMO

Human infants acquire language with notable ease compared to adults, but the neural basis of their remarkable brain plasticity for language remains little understood. Applying a scaling analysis of neural oscillations to address this question, we show that newborns' electrophysiological activity exhibits increased long-range temporal correlations after stimulation with speech, particularly in the prenatally heard language, indicating the early emergence of brain specialization for the native language.


Assuntos
Percepção da Fala , Lactente , Adulto , Humanos , Recém-Nascido , Percepção da Fala/fisiologia , Idioma , Encéfalo/fisiologia , Desenvolvimento da Linguagem , Aprendizagem
5.
Proc Natl Acad Sci U S A ; 120(46): e2311548120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931096

RESUMO

We address a generalization of the concept of metapopulation capacity for trees and networks acting as the template for ecological interactions. The original measure had been derived from an insightful phenomenological model and is based on the leading eigenvalue of a suitable landscape matrix. It yields a versatile predictor of metapopulation persistence through a threshold value of the eigenvalue determined by ecological features of the focal species. Here, we present an analytical solution to a fundamental microscopic model that incorporates key ingredients of metapopulation dynamics and explicitly distinguishes between individuals comprising the "settled population" and "explorers" seeking colonization. Our approach accounts for general network characteristics (in particular graph-driven directional dispersal which is known to significantly constrain many ecological estimates) and yields a generalized version of the original model, to which it reduces for particular cases. Through examples, including real landscapes used as the template, we compare the predictions from our approach with those of the standard model. Results suggest that in several cases of practical interest, differences are significant. We also examine, with both models, how changes in habitat fragmentation, including removal, addition, or alteration in size, affect metapopulation persistence. The current approach demonstrates a high level of flexibility, enabling the incorporation of diverse "microscopic" elements and their impact on the resulting biodiversity landscape pattern.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Dinâmica Populacional , Biodiversidade , Árvores
6.
iScience ; 26(3): 106181, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895645

RESUMO

Between 2019 and 2020, during the country's hottest and driest year on record, Australia experienced a dramatic bushfire season, with catastrophic ecological and environmental consequences. Several studies highlighted how such abrupt changes in fire regimes may have been in large part a consequence of climate change and other anthropogenic transformations. Here, we analyze the monthly evolution of the burned area in Australia from 2000 to 2020, obtained via satellite imaging through the MODIS platform. We find that the 2019-2020 peak is associated with signatures typically found near critical points. We introduce a modeling framework based on forest-fire models to study the properties of these emergent fire outbreaks, showing that the behavior observed during the 2019-2020 fire season matches the one of a percolation transition, where system-size outbreaks appear. Our model also highlights the existence of an absorbing phase transition that might be eventually crossed, after which the vegetation cannot recover.

7.
Biomolecules ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275746

RESUMO

Continuous and significant progress in sequencing technologies and bioinformatics pipelines has revolutionized our comprehension of microbial communities, especially for human microbiomes. However, most studies have focused on studying the taxonomic composition of the microbiomes and we are still not able to characterize dysbiosis and unveil the underlying ecological consequences. This study explores the emergent organization of functional abundances and correlations of gut microbiomes in health and disease. Leveraging metagenomic sequences, taxonomic and functional tables are constructed, enabling comparative analysis. First, we show that emergent taxonomic and functional patterns are not useful to characterize dysbiosis. Then, through differential abundance analyses applied to functions, we reveal distinct functional compositions in healthy versus unhealthy microbiomes. In addition, we inquire into the functional correlation structure, revealing significant differences between the healthy and unhealthy groups, which may significantly contribute to understanding dysbiosis. Our study demonstrates that scrutinizing the functional organization in the microbiome provides novel insights into the underlying state of the microbiome. The shared data structure underlying the functional and taxonomic compositions allows for a comprehensive macroecological examination. Our findings not only shed light on dysbiosis, but also underscore the importance of studying functional interrelationships for a nuanced understanding of the dynamics of the microbial community. This research proposes a novel approach, bridging the gap between microbial ecology and functional analyses, promising a deeper understanding of the intricate world of the gut microbiota and its implications for human health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose , Metagenoma , Metagenômica
8.
Proc Natl Acad Sci U S A ; 119(45): e2211449119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322754

RESUMO

The common intuition among the ecologists of the midtwentieth century was that large ecosystems should be more stable than those with a smaller number of species. This view was challenged by Robert May, who found a stability bound for randomly assembled ecosystems; they become unstable for a sufficiently large number of species. In the present work, we show that May's bound greatly changes when the past population densities of a species affect its own current density. This is a common feature in real systems, where the effects of species' interactions may appear after a time lag rather than instantaneously. The local stability of these models with self-interaction is described by bounds, which we characterize in the parameter space. We find a critical delay curve that separates the region of stability from that of instability, and correspondingly, we identify a critical frequency curve that provides the characteristic frequencies of a system at the instability threshold. Finally, we calculate analytically the distributions of eigenvalues that generalize Wigner's as well as Girko's laws. Interestingly, we find that, for sufficiently large delays, the eigenvalues of a randomly coupled system are complex even when the interactions are symmetric.


Assuntos
Ecossistema , Densidade Demográfica
9.
Elife ; 112022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920817

RESUMO

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Assuntos
Ecossistema , Plâncton , Genômica , Geografia , Oceanos e Mares , Plâncton/genética
10.
Nat Commun ; 13(1): 3683, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760787

RESUMO

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.


Assuntos
Conectoma , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
11.
Sci Rep ; 12(1): 10770, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750684

RESUMO

The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.


Assuntos
Modelos Neurológicos , Neurônios , Animais , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Ruído , Ratos
12.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20210245, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35599557

RESUMO

Understanding the conditions of feasibility and stability in ecological systems is a major challenge in theoretical ecology. The seminal work of May in 1972 and recent developments based on the theory of random matrices have shown the existence of emergent universal patterns of both stability and feasibility in ecological dynamics. However, only a few studies have investigated the role of delay coupled with population dynamics in the emergence of feasible and stable states. In this work, we study the effects of delay on generalized Loka-Volterra population dynamics of several interacting species in closed ecological environments. First, we investigate the relation between feasibility and stability of the modelled ecological community in the absence of delay and find a simple analytical relation when intra-species interactions are dominant. We then show how, by increasing the time delay, there is a transition in the stability phases of the population dynamics: from an equilibrium state to a stable non-point attractor phase. We calculate analytically the critical delay of that transition and show that it is in excellent agreement with numerical simulations. Finally, following a similar approach to characterizing stability in empirical studies, we investigate the coefficient of variation, which quantifies the magnitude of population fluctuations. We show that in the oscillatory regime induced by the delay, the variability at community level decreases for increasing diversity. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Assuntos
Biota , Ecossistema , Modelos Biológicos , Dinâmica Populacional
13.
PLoS Comput Biol ; 18(4): e1010051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404933

RESUMO

Understanding of the pairing statistics in solutions populated by a large number of distinct solute species with mutual interactions is a challenging topic, relevant in modeling the complexity of real biological systems. Here we describe, both experimentally and theoretically, the formation of duplexes in a solution of random-sequence DNA (rsDNA) oligomers of length L = 8, 12, 20 nucleotides. rsDNA solutions are formed by 4L distinct molecular species, leading to a variety of pairing motifs that depend on sequence complementarity and range from strongly bound, fully paired defectless helices to weakly interacting mismatched duplexes. Experiments and theory coherently combine revealing a hybridization statistics characterized by a prevalence of partially defected duplexes, with a distribution of type and number of pairing errors that depends on temperature. We find that despite the enormous multitude of inter-strand interactions, defectless duplexes are formed, involving a fraction up to 15% of the rsDNA chains at the lowest temperatures. Experiments and theory are limited here to equilibrium conditions.


Assuntos
DNA , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Soluções , Temperatura , Termodinâmica
14.
Entropy (Basel) ; 24(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35455121

RESUMO

Molecular ecology uses molecular genetic data to answer traditional ecological questions in biogeography and biodiversity, among others. Several ecological principles, such as the niche hypothesis and the competitive exclusions, are based on the fact that species compete for resources. More in generally, it is now recognized that species interactions play a crucial role in determining the coexistence and abundance of species. However, experimentally controllable platforms, which allow us to study and measure competitions among species, are rare and difficult to implement. In this work, we suggest exploiting a Molecular Dynamics coarse-grained model to study interactions among single strands of DNA, representing individuals of different species, which compete for binding to other oligomers considered as resources. In particular, the well-established knowledge of DNA-DNA interactions at the nanoscale allows us to test the hypothesis that the maximum consecutive overlap between pairs of oligomers measure the species' competitive advantages. However, we suggest that a more complex structure also plays a role in the ability of the species to successfully bind to the target resource oligomer. We complement the simulations with experiments on populations of DNA strands which qualitatively confirm our hypotheses. These tools constitute a promising starting point for further developments concerning the study of controlled, DNA-based, artificial ecosystems.

15.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328493

RESUMO

The effectiveness of several biological and biotechnological processes relies on the remarkably selective pairing of nucleic acids in contexts of molecular complexity. Relevant examples are the on-target binding of primers in genomic PCR and the regulatory efficacy of microRNA via binding on the transcriptome. Here, we propose a statistical framework that enables us to describe and understand such selectivity by means of a model that is extremely cheap from a computational point of view. By re-parametrizing the hybridization thermodynamics on three classes of base pairing errors, we find a convenient way to obtain the free energy of pairwise interactions between nucleic acids. We thus evaluate the hybridization statistics of a given oligonucleotide within a large number of competitive sites that we assume to be random, and we compute the probability of on-target binding. We apply our strategy to PCR amplification and microRNA-based gene regulation, shedding new light on their selectivity. In particular, we show the relevance of the defectless pairing of 3' terminals imposed by the polymerase in PCR selection. We also evaluate the selectivity afforded by the microRNA seed region, thus quantifying the extra contributions given by mechanisms beyond pairing statistics.


Assuntos
MicroRNAs , Ácidos Nucleicos , Pareamento de Bases , MicroRNAs/genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Termodinâmica
16.
Phys Rev Lett ; 127(20): 208101, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860037

RESUMO

Local coexistence of species in large ecosystems is traditionally explained within the broad framework of niche theory. However, its rationale hardly justifies rich biodiversity observed in nearly homogeneous environments. Here we consider a consumer-resource model in which a coarse-graining procedure accounts for a variety of ecological mechanisms and leads to effective spatial effects which favor species coexistence. Herein, we provide conditions for several species to live in an environment with very few resources. In fact, the model displays two different phases depending on whether the number of surviving species is larger or smaller than the number of resources. We obtain conditions whereby a species can successfully colonize a pool of coexisting species. Finally, we analytically compute the distribution of the population sizes of coexisting species. Numerical simulations as well as empirical distributions of population sizes support our analytical findings.


Assuntos
Comportamento Competitivo , Ecossistema , Animais , Modelos Biológicos , Densidade Demográfica , Especificidade da Espécie
17.
Front Syst Neurosci ; 15: 709677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526881

RESUMO

Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.

18.
PLoS One ; 16(7): e0253461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197484

RESUMO

Big data require new techniques to handle the information they come with. Here we consider four datasets (email communication, Twitter posts, Wikipedia articles and Gutenberg books) and propose a novel statistical framework to predict global statistics from random samples. More precisely, we infer the number of senders, hashtags and words of the whole dataset and how their abundances (i.e. the popularity of a hashtag) change through scales from a small sample of sent emails per sender, posts per hashtag and word occurrences. Our approach is grounded on statistical ecology as we map inference of human activities into the unseen species problem in biodiversity. Our findings may have applications to resource management in emails, collective attention monitoring in Twitter and language learning process in word databases.


Assuntos
Big Data , Redes de Comunicação de Computadores/estatística & dados numéricos , Conjuntos de Dados como Assunto , Correio Eletrônico/estatística & dados numéricos , Mídias Sociais/estatística & dados numéricos , Humanos
19.
Phys Rev E ; 103(4-1): 042503, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005886

RESUMO

Deoxyribonucleic acid (DNA) hybridization is at the heart of countless biological and biotechnological processes. Its theoretical modeling played a crucial role, since it has enabled extracting the relevant thermodynamic parameters from systematic measurements of DNA melting curves. In this article, we propose a framework based on statistical physics to describe DNA hybridization and melting in an arbitrary mixture of DNA strands. In particular, we are able to analytically derive closed expressions of the system partition functions for any number N of strings and explicitly calculate them in two paradigmatic situations: (i) a system made of self-complementary sequences and (ii) a system comprising two mutually complementary sequences. We derive the melting curve in the thermodynamic limit (N→∞) of our description, which provides a full justification for the extra entropic contribution that in classic hybridization modeling was required to correctly describe within the same framework the melting of sequences either self-complementary or not. We thus provide a thorough study comprising limit cases and alternative approaches showing how our framework can give a comprehensive view of hybridization and melting phenomena.


Assuntos
Hibridização de Ácido Nucleico , Sequência de Bases , Modelos Teóricos , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039710

RESUMO

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Assuntos
Evolução Biológica , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Água/fisiologia , Xilema/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...